
RCA COSMAC VIP - Chip-8 Interpreter Disassembly

Address Code Labels Assembler Comments

0000 91 GHI 1 When a program is initially run R1 points to
the end of the last available page of on-card
RAM.

0001 BB PHI B Sets RB to the display page (this is the
highest memory page of on-card RAM)

0002 FF 01 SMI 0x01 Point to the previous page in RAM

0004 B2 PHI 2 Set the high order byte of the stack pointer
to this page

0005 B6 PHI 6 Set the high order byte of the the VX pointer
to this page

0006 F8 CF LDI 0xCF Initialise low order byte of stack pointer

0008 A2 PLO 2

0009 F8 81 LDI 0x81 These next four instructions set the
Program Counter for the interrupt routine in
R1 to 0x8146.

000B B1 PHI 1

000C F8 46 LDI 0x46

000E A1 PLO 1

000F 90 GHI 0 Set R4 to 0x001B in preparation for
assignment as Program Counter for the call
routine.

Compiled by Laurence Scotford 2013! ! ! ! Page 1 of 40! !

Address Code Labels Assembler Comments

0010 B4 PHI 4

0011 F8 1B LDI 0x1B

0013 A4 PLO 4

0014 F8 01 LDI 0x01 Set R5 to 0x01FC. This register will act as
the Chip 8 Program Counter

0016 B5 PHI 5

0017 F8 FC LDI 0xFC

0019 A5 PLO 5

001A D4 SEP 4 R4 is now the interpreter program counter.
This has no effect on the sequence at this
point because R4 points to 001B which is
the next instruction pointed to by the old PC
in R0.

001B 96 FETCH_DEC
ODE_LOOP:

GHI 6 The Chip 8 Fetch and Decode routine starts
here
Get the high order byte of the VX pointer ...

001C B7 PHI 7 ... and copy this to the high order byte of the
VY pointer

001D E2 SEX 2 Use the stack pointer (R2) for indirect
register addressing operations

001E 94 GHI 4 Copy high order byte of CALL routine
pointer (R4) ...

Compiled by Laurence Scotford 2013! ! ! ! Page 2 of 40! !

Address Code Labels Assembler Comments

001F BC PHI C ... and copy it to RC (RC will be used later
as a pointer into a pair of lookup tables that
hold the addresses of the routines that
handle each instruction group)

0020 45 LDA 5 Get the first byte of the next Chip-8
instruction and advance the instruction
pointer (R5)

0021 AF PLO F Copy first byte of Chip-8 instruction to RF.0

0022 F6 SHR The next four instructions move the most
significant digit of the Chip-8 instruction
(first byte) - the instruction group code - to
the position of the least significant digit. The
least significant digit is discarded

0023 F6 SHR

0024 F6 SHR

0025 F6 SHR

0026 32 44 BZ FIRST_DIGIT_0 If op code digit is 0 branch to
FIRST_DIGIT_0

0028 F9 50 ORI 0x50 Apply a mask to the instruction group code
to turn it into the low-order part of an
address that points to an entry in a lookup
table (This table is stored from 0x0051 to
0x005F)

Compiled by Laurence Scotford 2013! ! ! ! Page 3 of 40! !

Address Code Labels Assembler Comments

002A AC PLO C RC now points to the correct entry in a
lookup table for the instruction group of the
current instruction - this table holds the high
order byte of the address of the routine that
handles that instruction group

002B 8F GLO F Retrieve the unaltered copy of the first byte
of the Chip-8 instruction from RF.0

002C FA 0F ANI 0x0F Mask the first byte of the Chip-8 instruction
to leave only the least significant digit

002E F9 F0 ORI 0xF0 Apply a mask to the least significant digit of
the first byte of the Chip-8 instruction to
form the low order byte of a pointer to the
relevant variable (These variables are
stored in the final page of on-card RAM
from 0x0XF0 to 0x0XFF)

0030 A6 PLO 6 The VX pointer (R6) now points to the
correct variable for this instruction

0031 05 LDN 5 Get the second byte of the Chip-8
instruction (do not advance the instruction
pointer)

0032 F6 SHR The next four instructions move the most
significant digit of the Chip-8 instruction
(second byte) - VY - to the position of the
least significant digit. The least significant
digit is discarded)

0033 F6 SHR

Compiled by Laurence Scotford 2013! ! ! ! Page 4 of 40! !

Address Code Labels Assembler Comments

0034 F6 SHR

0035 F6 SHR

0036 F9 F0 ORI 0xF0 Apply a mask to the VY part of the Chip-8
instruction to form the low order byte of a
pointer to the relevant variable (These
variables are stored in the final page of on-
card RAM from 0x0XF0 to 0x0XFF)

0038 A7 PLO 7 The VY pointer (R7) now points to the
correct variable for this instruction

0039 4C LDA C Get high-order byte of routine from look-up
table

003A B3 PHI 3 Store this in the high order byte of the
interpreter programme counter (R3)

003B 8C GLO C Get the low order byte of the address
currently pointed to by RC - this will have
been moved on by 1 by the LDA
instruction...

003C FC 0F ADI 0x0F ... so, as the corresponding entries in each
table are placed 16 bytes apart, it's just
necessary to add 0x0F to the address ...

003E AC PLO C ... so that RC now points to the correct
place in the second look up table

003F 0C LDN C Get the low order byte of the address from
the lookup table

Compiled by Laurence Scotford 2013! ! ! ! Page 5 of 40! !

Address Code Labels Assembler Comments

0040 A3 CALL_SUBRO
UTINE:

PLO 3 And use this to set the low order byte of the
interpreter programme counter (R3)

0041 D3 SEP 3 Now call the interpreter subroutine to
handle this instruction group

0042 30 1B BR FETCH_DECODE_LOOP On return from the subroutine, loop back
and get the next Chip-8 instruction

0044 8F FIRST_DIGIT
_0:

GLO F This subroutine is entered when the first
digit of the instruction is 0x0. This indicates
a call to the machine code routine stored in
the remaining three digits of the instruction.
The routine starts by retrieving the original
first byte of the Chip-8 instruction in RF.0

0045 FA 0F ANI 0x0F Use a mask to remove the first digit of the
instruction (leaving the high order byte of
the address to be called)

0047 B3 PHI 3 Use this to set the high order byte of the
interpreter programme counter (R3), as this
is also used as the programme counter for
machine code routines called with this
instruction

0048 45 LDA 5 Get the low-order byte of the address to be
called directly from memory using the
Chip-8 programme counter (R5) and then
advance this

0049 30 40 BR CALL_SUBROUTINE Now return to the main fetch and decode
loop and call the relevant subroutine

Compiled by Laurence Scotford 2013! ! ! ! Page 6 of 40! !

Address Code Labels Assembler Comments

004B 22 SWITCH_ON_
DISPLAY:

DEC 2 Subroutine to turn on display
R2 is the stack pointer. The 1802 has no
push or pop operations, so this has to be
done manually. The stack grows
downwards in memory, so to push a value
onto the stack, the stack pointer has to first
be decremented.

004C 69 INP 1 Decrement stack pointer and turn display
on (display interrupts are controlled by
routine at 8146)

004D 12 INC 2 Increment R2 (Stack pointer)

004E D4 SEP 4 Return to 0042

004F 00 00 DB 0x00, 0x00 This is filler before the subroutine address
lookup tables so that the last digit of the
address for each entry corresponds to the
digit that indicates the instruction group (i.e.
the entry for instruction group 1 is found at
0x0051, the entry for instruction group 2 at
0x0052, etc.)

0051 01 01 01 01 01 01 01 01
01 01 01 01 00 01 01

DB 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x00, 0x01, 0x01

A lookup table holding the high order bytes
of the addresses of the subroutines for
Chip-8 instruction groups 1 through F

0060 00 DB 0x00 This is filler between the tables so that the
second table is also aligned to instruction
group numbers (i.e. 1 is at 0x0061, 2 at
0x0062, etc.)

Compiled by Laurence Scotford 2013! ! ! ! Page 7 of 40! !

Address Code Labels Assembler Comments

0061 7C 75 83 88 95 B4 87
BC 91 EB A4 D9 70 99
05

DB 0x7C, 0x75, 0x83, 0x88, 0x95,
0xB4, 0x87, 0xBC, 0x91, 0xEB,
0xA4, 0xD9, 0x70, 0x99, 0x05

Table holding the low bytes for the
subroutines selected by the first digit of
Chip-8 instructions. So the completed
addresses for each digit are:
0x1: 0x017C
0x2: 0x0175
0x3: 0x0183
0x4: 0x018B
0x5: 0x0195
0x6: 0x01B4
0x7: 0x01B7
0x8: 0x01BC
0x9: 0x0191
0xA: 0x01EB
0xB: 0x01A4
0xC: 0x01D9
0xD: 0x0070
0xE: 0x0199
0xF: 0x0105

0070 06 DISPLAY: LDN 6 Display subroutine (1st digit = 0xD)
Get VX(stored at address in R6)

0071 FA 07 ANI 0x07 Mask with 0x07 to save only least
significant three bits. These indicate the bit
offset of the first bit of sprite data

0073 BE PHI E Save these in RE.1

0074 06 LDN 6 Get VX

Compiled by Laurence Scotford 2013! ! ! ! Page 8 of 40! !

Address Code Labels Assembler Comments

0075 FA 3F ANI 0x3F Mask with 0x3F to save least significant six
bits (max value of X position is 63, which
requires only six bits)

0077 F6 SHR The next three instructions perform an
integer division of VX by eight, which gives
the position in the pixel row of the first byte
that will contain sprite data

0078 F6 SHR

0079 F6 SHR

007A 22 DEC 2 Decrement the stack pointer (R2) ready for
a push

007B 52 STR 2 Push accumulator (containing most
significant three bits of VX) onto the stack

007C 07 LDN 7 Get VY (stored at address in R7)

007D FA 1F ANI 0x1F Mask with 0x1F to save the five least
significant bits (max value of Y position is
31, which requires only five bits)

007F FE SHL The next three instructions perform a
multiplication of VY by eight, which gives
the position in display memory of the first
row that will contain sprite data

0080 FE SHL

0081 FE SHL

Compiled by Laurence Scotford 2013! ! ! ! Page 9 of 40! !

Address Code Labels Assembler Comments

0082 F1 OR OR the result with the top of the stack. This
gives the position in display memory of the
first byte that will contain pixel data from the
sprite

0083 AC PLO C Put the result in RC0

0084 9B GHI B Get high order byte of address of display
memory

0085 BC PHI C Put this in RC1. RC now holds the address
of the first byte that will have sprite data
written to it

0086 45 LDA 5 Get the second byte of the Chip-8
instruction and advance the Chip-8
programme counter

0087 FA 0F ANI 0x0F Mask off the least significant hex digit. This
contains the number of bytes (rows) in the
sprite pattern

0089 AD PLO D Save it in RD - this will be used as a display
row counter

008A A7 PLO 7 Save it in R7 - this will be used as a row
counter

Compiled by Laurence Scotford 2013! ! ! ! Page 10 of 40! !

Address Code Labels Assembler Comments

008B F8 D0 LDI 0xD0 0xD0 is the low order byte of the address of
the area of RAM set aside as a Chip-8 work
area. This will be used to assemble a two-
byte wide copy of the sprite with the sprite
data shifted to the correct offset for the
position at which the sprite will be displayed

008D A6 PLO 6 Put this into R6.0 As R6 is normally used as
the VX pointer and the variables are stored
in the same page, R6.1 will already be set
correctly

008E 93 NEXT_SPRIT
E_ROW:

GHI 3 R3.1 is used as a convenient source of the
constant 0x0

008F AF PLO F Set RF.0 to 0x0. The left byte of the
reconstructed sprite will be initially
assembled here

0090 87 GLO 7 Get the number of rows left to assemble

0091 32 F3 BZ RESET_I_PTR Branch to the next stage if they are all done

0093 27 DEC 7 Count off one row of sprite data

0094 4A LDA A Get one byte of sprite data from the
address pointed at by I (RA) and advance I
to next byte

0095 BD PHI D Put byte in high byte of RD

0096 9E GHI E Get the bit offset for the first bit of sprite
data (this was saved in RE.1 earlier)

Compiled by Laurence Scotford 2013! ! ! ! Page 11 of 40! !

Address Code Labels Assembler Comments

0097 AE PLO E Put these in RE.0. This will be used as a bit
counter

0098 8E SPLIT_SPRIT
E_ROW:

GLO E Get the current bit count

0099 32 A4 BZ STORE_SPRITE_ROW Branch when the bit count is zero,
indicating that the sprite data for that row is
now correctly split across two bytes (note
that this could be immediately if the sprite is
positioned at the start of a byte)

009B 9D GHI D Get byte to be displayed

009C F6 SHR Shift right by 1 bit. his will move a zero into
the most significant bit, shift everything else
along and move the least significant bit into
the carry flag

009D BD PHI D Store shifted byte back in RD.1

009E 8F GLO F Get current pattern in second byte

009F 76 SHRC Shift with carry to the right by one bit. This
will move the discarded bit from the first
byte into the most significant bit position
and shift everything else along

00A0 AF PLO F Store the result back in RF.0

00A1 2E DEC E Count off another bit

00A2 30 98 BR SPLIT_SPRITE_ROW Branch back to top of loop

Compiled by Laurence Scotford 2013! ! ! ! Page 12 of 40! !

Address Code Labels Assembler Comments

00A4 9D STORE_SPRI
TE_ROW:

GHI D Get lefthand byte of sprite row to be
displayed

00A5 56 STR 6 Store it in the working area in memory

00A6 16 INC 6 Point to the next byte in the working area

00A7 8F GLO F Get the righthand byte of the sprite row to
be displayed

00A8 56 STR 6 Store it in the working area in memory

00A9 16 INC 6 Point to the next byte in the working area

00AA 30 8E BR NEXT_SPRITE_ROW Go back and do next row

00AC 00 DISPLAY_SP
RITE:

IDL Wait for display interrupt

00AD EC SEX C Set the pointer to display memory (RC) to
be used for register indirect addressing
memory operations

00AE F8 D0 LDI 0xD0 0xD0 is the low order byte of the address of
the area of RAM set aside as a Chip-8 work
area. This is where the offset sprite has
been assembled

00B0 A6 PLO 6 R6 now points to assembled offset sprite

00B1 93 GHI 3 R3.1 (high-order byte of interpreter
programme counter) is a convenient source
of the constant 0x0

Compiled by Laurence Scotford 2013! ! ! ! Page 13 of 40! !

Address Code Labels Assembler Comments

00B2 A7 PLO 7 Set R7.0 to zero. This will be used to
temporarily store the collision status

00B3 8D SPRITE_DISP
LAY_LOOP:

GLO D Get the number of rows left to display

00B4 32 D9 BZ SAVE_COLLISION_FLAG Branch to next stage if all rows done

00B6 06 LDN 6 Get the lefthand byte of sprite data

00B7 F2 AND AND it with the current byte in display
memory at the target position. This will put a
1 in any bit where a set bit overlaps in both
the display memory and the sprite data. So
any non-zero result indicates that a collision
has occurred

00B8 2D DEC D Count off one row

00B9 32 BE BZ DISPLAY_LEFT_BYTE: Branch forward if no collision occurred

00BB F8 01 LDI 0x01 Construct a collision flag

00BD A7 PLO 7 Store this in R7.0

00BE 46 DISPLAY_LEF
T_BYTE:

LDA 6 Get the lefthand byte of sprite data and
advance the pointer

00BF F3 XOR XOR it with the current byte in display RAM

00C0 5C STR C Now write it to the display by storing the
modified byte back in the display RAM

Compiled by Laurence Scotford 2013! ! ! ! Page 14 of 40! !

Address Code Labels Assembler Comments

00C1 02 LDN 2 Get the x position of the sprite (in bytes)
from the stack

00C2 FB 07 XRI 0x07 XOR it with 0x07 to see if it is at position 7
(i.e. the last byte in the row)

00C4 32 D2 BZ DISPLAY_NEXT_ROW If it is at the right edge of the window, then
the second byte would be off screen and
there is no point in trying to display it, so
skip to the next row

00C6 1C INC C Point to the next byte in the display memory

00C7 06 LDN 6 Get the righthand byte of sprite data

00C8 F2 AND AND it with the current byte in display
memory at the target position. This will put a
1 in any bit where a set bit overlaps in both
the display memory and the sprite data. So
any non-zero result indicates that a collision
has occurred

00C9 32 CE BZ DISPLAY_RIGHT_BYTE Branch forward if no collision occurred

00CB F8 01 LDI 0x01 Construct a collision flag

00CD A7 PLO 7 Store this in R7.0

00CE 06 DISPLAY_RIG
HT_BYTE:

LDN 6 Get the righthand byte of sprite data

00CF F3 XOR XOR it with current byte in display RAM

Compiled by Laurence Scotford 2013! ! ! ! Page 15 of 40! !

Address Code Labels Assembler Comments

00D0 5C STR C Now write it to the display by storing the
modified byte back in the display RAM

00D1 2C DEC C Reset RC so it points to the first byte in the
row with sprite data

00D2 16 DISPLAY_NE
XT_ROW:

INC 6 Point R6 the next byte of sprite data

00D3 8C GLO C Get the low-order byte of the current
position in display RAM

00D4 FC 08 ADI 0x08 Add 0x08 to move it down one row

00D6 AC PLO C Put the result back in RC.0

00D7 3B B3 BNF SPRITE_DISPLAY_LOOP Only display the next row if it is not off the
bottom of the screen. This will be indicated
because adding 0x08 to the display RAM
address will cross a page boundary and
generate a carry condition

00D9 F8 FF SAVE_COLLI
SION_FLAG:

LDI 0xFF 0xFF is the low order byte of the address of
variable F, where the collision flag will be
stored

00DB A6 PLO 6 R6 now points to variable F

00DC 87 GLO 7 Get the collision flag

00DD 56 STR 6 Store it in variable F

00DE 12 INC 2 Increment R2 (Stack pointer)

Compiled by Laurence Scotford 2013! ! ! ! Page 16 of 40! !

Address Code Labels Assembler Comments

00DF D4 RETURN_TO
_FETCH_LOO
P:

SEP 4 Set R4 as program counter (this returns
execution to the fetch and decode routine at
0042)

00E0 9B CLS: GHI B Start of routine to erase display page.
Get the display page ...

00E1 BF PHI F ... and store it in RF.1

00E2 F8 FF LDI 0xFF ... so that RF now points to the final byte in
the display page

00E4 AF PLO F ... so that RF now points to the final byte in
the display page

00E5 93 CLEAR_SCR
EEN_LOOP:

GHI 3 Get zero into the accumulator (D)
R3 is the interpreter subroutine/machine
code subroutine programme counter. Since
this routine is in page 0, R3.1 will contain 0
and it takes just a one byte instruction to get
the value from this source than to use a
two-byte immediate addressing instruction.
This is another example where saving a few
bytes of memory here or there was more
important than code clarity!

00E6 5F STR F Zero the memory location currently pointed
to by RF

00E7 8F GLO F Get the low order byte of the current
address in RF

Compiled by Laurence Scotford 2013! ! ! ! Page 17 of 40! !

Address Code Labels Assembler Comments

00E8 32 DF BZ RETURN_TO_FETCH_LOOP If the byte that's just been zeroed is is at
address 0x00 in the display page then we're
done, so jump to the return instruction

00EA 2F DEC F Otherwise point to the previous byte in the
display (bytes are zeroed starting at the end
and moving backwards through the display
memory)

00EB 30 E5 BR CLEAR_SCREEN_LOOP Jump back to the top of the loop

00ED 00 DB 0x00 Filler

00EE 42 RET: LDA 2 Start of routine to return from subroutine
Pop the high-order byte of the return
address off the stack and advance the stack
pointer

00EF B5 PHI 5 Load the high-order byte of the return
address into the Chip-8 programme counter
(R5)

00F0 42 LDA 2 Pop the low-order byte of the return
address off the stack

00F1 A5 PLO 5 Load the low-order byte of the return
address into the Chip-8 programme counter

00F2 D4 SEP 4 Return to the fetch and decode routine. The
next instruction to be fetched will be at the
return address

Compiled by Laurence Scotford 2013! ! ! ! Page 18 of 40! !

Address Code Labels Assembler Comments

00F3 8D RESET_I_PT
R

GLO D This is part of the display routine used to
reset the I pointer to its original value
(pointing at the start of the sprite)
Get the total number of sprite rows

00F4 A7 PLO 7 Make this into a counter in R7.0

00F5 87 RESET_I_LO
OP:

GLO 7 Get number of rows remaining

00F6 32 AC BZ DISPLAY_SPRITE If zero (all rows done, so I pointer is reset),
branch routine to display sprite

00F8 2A DEC A Decrement I pointer (RA)

00F9 27 DEC 7 Decrement row counter

00FA 30 F5 BR RESET_I_LOOP Branch back to top of the loop

00FC 00 00 00 00 DB 0x00, 0x00, 0x00, 0x00 Filler to end of RAM page

0100 00 00 00 00 00 DB 0x00, 0x00, 0x00, 0x00, 0x00 Filler at start of next page

0105 45 DECODE_F_I
NSTRUCTION
S:

LDA 5 Start of routine to decode 0xFXXX
instructions

0106 A3 PLO 3 Use this to set the interpreter programme
counter (R3) to the address of the relevant
handler. Execution will continue from there

0107 98 FX07: GHI 8 Instruction FX07 -> get current value of
delay timer into VX
Get current value of timer (R8.1)

Compiled by Laurence Scotford 2013! ! ! ! Page 19 of 40! !

Address Code Labels Assembler Comments

0108 56 STR 6 Store it in VX

0109 D4 SEP 4 Return to the fetch and decode routine

010A F8 81 FX0A: LDI 0x81 Instruction FX0A -> wait for a key press and
store it in VX
0x81 is the high-order byte of the address
of a routine in the COSMAC VIP ROM that
reads the keyboard

010C BC PHI C Store this in RC.1

010D F8 95 LDI 0x95 0x95 is the low-order byte of the address of
the keyboard routine

010F AC PLO C Put this in RC.0 - RC now contains the full
address 0x8195

0110 22 DEC 2 Decrement stack pointer - the ROM routine
uses the stack so we need to ensure the
stack pointer is pointing at the next empty
location before calling it

0111 DC SEP C Call the routine to read the keyboard
On return the value of the key pressed will
be in the accumulator D

0112 12 INC 2 Increment stack pointer

0113 56 STR 6 Store the result in VX

0114 D4 SEP 4 Return to the fetch and decode routine

0115 06 FX15: LDN 6 Instruction FX15 -> Set timer to VX

Compiled by Laurence Scotford 2013! ! ! ! Page 20 of 40! !

Address Code Labels Assembler Comments

0116 B8 PHI 8 Get VX (designated by R6) and put it into
high byte of R8 (timer)

0017 D4 SEP 4 Return to fetch and decode routine

0118 06 FX18: LDN 6 Instruction FX18 -> Set sound timer to VX
Get the value in VX (which is pointed to by
R6)

0119 A8 PLO 8 Copy it into the sound timer (R8.0)

011A D4 SEP 4 Return to fetch and decode routine

011B 64 0A 01 BCD_DENOM
INATORS:

DB 0x64, 0x0A, 0x01 Three constants with the decimal values of
100, 10 and 1, used by the BCD instruction
FX33

011E E6 FX1E: SEX 6 Instruction FX1E -> add variable X to I
variable
Set register indirect addressing operations
to use R6 (VX pointer)

011F 8A GLO A Get the low order byte of I (stored in RA.0)

0120 F4 ADD Add value in VX to low order byte of I

0121 AA PLO A Put result back into low order byte of I (RA.
0)

0122 3B 28 BNF SAME_PAGE If no carry as generated (i.e. the addition of
the offset didn't cross a page boundary)
then there's nothing more to do

0124 9A GHI A Get high order byte of I (RA.1)

Compiled by Laurence Scotford 2013! ! ! ! Page 21 of 40! !

Address Code Labels Assembler Comments

0125 FC 01 ADI 0x01 Add 1 to it (to point to next page)

0127 BA PHI A Put the result back in high order byte of I
(RA.1)

0128 D4 SAME_PAGE: SEP 4 Return to the fetch and decode routine

0129 F8 81 FX29: LDI 0x81 Instruction FX29 -> Point I to sprite for
hexadecimal character in VX
Both the look up table and the sprite data
are located in the ROM in page 0x81

012B BA PHI A Store this in the high order byte of I (RA.1)

012C 06 LDN 6 Get the value in VX (R6)

012D FA 0F ADI 0x0F Apply a mask to save just the least
significant digit

012F AA PLO A I now points to the correct entry in the look-
up table

0130 0A LDN A Get the low-order byte of the sprite address
from the look-up table

0131 AA PLO A I now points to the start of the data for the
correct sprite

0132 D4 SEP 4 Return to the fetch and decode routine

0133 E6 FX33: SEX 6 Instruction FX33 -> Store BCD value of VX
at memory pointed to by I
Use VX (R6) for register indirect addressing

Compiled by Laurence Scotford 2013! ! ! ! Page 22 of 40! !

Address Code Labels Assembler Comments

0134 06 LDN 6 Get the value to be converted from VX

0135 BF PHI F Preserve the original value by temporarily
storing it in RF.1

0136 93 GHI 3 Get the high order byte of the address of
the BCD denominator constants

0137 BE PHI E Store this in RE.1

0138 F8 1B LDI BCD_DENOMINATORS Get the low order byte of the address of the
BCD denominator constants

013A AE PLO E RE now points to first BCD denominator
constant

013B 2A DEC A The I pointer (RA) is pointing to first byte of
memory to store BCD but it needs to be
moved to the byte before that before
entering the loop

013C 1A BCD_LOOP: INC A Point I (RA) to location of next BCD digit

013D F8 00 LDI 0x00 Create a zero value

013F 5A STR A Use this to initialise the BCD digit

0140 0E DIVISION_LO
OP:

LDN E Get the current BCD constant

0141 F5 SD Subtract it from the current value of VX

Compiled by Laurence Scotford 2013! ! ! ! Page 23 of 40! !

Address Code Labels Assembler Comments

0142 3B 4B BNF NEXT_DIGIT: If the result is negative then the current digit
is at the correct value, so move on to the
next one

0144 56 STR 6 Store the remainder back in VX

0145 0A LDN A Get the value of the current BCD digit

0146 FC 01 ADI 0x01 Add 1 to it

0148 5A STR A And put it back into memory

0149 30 40 BR DIVISION_LOOP: Continue to divide VX by current
denominator

014B 4E NEXT_DIGIT: LDA E Get current BCD constant and point to next
one

014C F6 SHR test the least significant bit

014D 3B 3C BNF BCD_LOOP If it's not set (i.e. the constant we just using
was not 0x01) then loop back and do the
next digit

014F 9F GHI F Get the preserved original value of VX

0150 56 STR 6 Restore this to VX

0151 2A DEC A This and the next instruction restores I (RA)
so it is pointing to the first stored BCD digit

0152 2A DEC A

0153 D4 SEP 4 Return to the fetch and decode routine

Compiled by Laurence Scotford 2013! ! ! ! Page 24 of 40! !

Address Code Labels Assembler Comments

0154 00 DB 0x00 Filler

0155 22 FX55: DEC 2 Instruction FX55 -> Store V0 to VX at
memory pointed to by I
Decrement the stack pointer (R2), ready for
a push

0156 86 GLO 6 Get the low order byte of the VX pointer ...

0157 52 STR 2 ... and push it onto the stack

0158 F8 F0 LDI 0xF0 0xF0 is the low-order byte of the address of
the first variable (V0)

015A A7 PLO 7 Set this as the low-order byte of the VY
pointer (R7)

015B 07 STORE_VARS
_LOOP:

LDN 7 Get the value of the next variable

015C 5A STR A Store it in the address pointed to by I

015D 87 GLO 7 Get the low-order byte of the address in I

015E F3 XOR XOR it with the value at the stack (the low-
order byte of the VX pointer). This will result
in 0 if they match - indicating that all the
requested variables have been stored

015F 17 INC 7 Point VY to the next variable

0160 1A INC A Point I to the next address in memory

Compiled by Laurence Scotford 2013! ! ! ! Page 25 of 40! !

Address Code Labels Assembler Comments

0161 3A 5B BNZ STORE_VARS_LOOP Return to top of loop if there are still more
variables to store

0163 12 INC 2 Pop the low-order byte of VX off the stack

0164 D4 SEP 4 Return to the fetch and decode routine

0165 22 FX65: DEC 2 Instruction FX65 -> Set V0 to VX to values
stored from memory pointed to by I
Decrement the stack pointer (R2), ready for
a push

0166 86 GLO 6 Get the low order byte of the VX pointer ...

0167 52 STR 2 ... and push it onto the stack

0168 F8 F0 LDI 0xF0 0xF0 is the low-order byte of the address of
the first variable (V0)

016A A7 PLO 7 Set this as the low-order byte of the VY
pointer (R7)

016B 0A LOAD_VARS_
LOOP:

LDN A Get the byte at the address currently
pointed to by I

016C 57 STR 7 Store it in the variable currently pointed to
by VY

016D 87 GLO 7 Get the low-order byte of the address in I

016E F3 XOR XOR it with the value at the stack (the low-
order byte of the VX pointer). This will result
in 0 if they match - indicating that all the
requested variables have been loaded

Compiled by Laurence Scotford 2013! ! ! ! Page 26 of 40! !

Address Code Labels Assembler Comments

016F 17 INC 7 Point VY to the next variable

0170 1A INC A Point I to the next address in memory

0171 3A 6B BNZ LOAD_VARS_LOOP Return to top of loop if there are still more
variables to load

0173 12 INC 2 Pop the low-order byte of VX off the stack

0174 D4 SEP 4 Return to the fetch and decode routine

0175 15 2MMM: INC 5 Start of handler for instruction group
2MMM: Call subroutine at 0x0MMM
Increment the Chip-8 programme counter
(R5) to point to the next instruction in
sequence

0176 85 GLO 5 Get the low-order byte of the address

0177 22 DEC 2 Decrement the stack pointer (R2)

0178 73 STXD Push the low-order byte of the address onto
the stack and decrement the stack pointer

0179 95 GHI 5 Get the high-order byte of the address

017A 52 STR 2 Push it onto the stack

017B 25 DEC 5 Reset the Chip-8 programme counter to
where it was (pointing at the low-order byte
of the current instruction)

Compiled by Laurence Scotford 2013! ! ! ! Page 27 of 40! !

Address Code Labels Assembler Comments

017C 45 1MMM: LDA 5 This is the entry point for the handler for
group 1MMM instructions: Branch to
instruction at address 0x0MMM
Get the low-order byte of the current
instruction

017D A5 PLO 5 Load it into the low-order byte of the Chip-8
programme counter

017E 86 GLO 6 Get the low-order byte of the VX pointer
(R6). This contains the most significant digit
of the address to be called/branched to

017F FA 0F ANI 0x0F We just need to mask it off to get it

0181 B5 PHI 5 Load this into the high order byte of the
Chip-8 programme counter (this now points
to the first instruction of the subroutine/
sequence to be branched to)

0182 D4 NO_SKIP: SEP 4 Return to fetch and decode routine (First
instruction fetched on return will be first
instruction of subroutine/sequence that has
been branched to)

Compiled by Laurence Scotford 2013! ! ! ! Page 28 of 40! !

Address Code Labels Assembler Comments

0183 45 3XNN: LDA 5 This is the entry point for the 3XNN
instruction group (Skip if VX = NN)
On entry the Chip-8 programme counter
(R5) will be pointing to the second byte of
the instruction, which contains the value to
be compared. This is loaded into the
accumulator before the programme counter
is advanced to point to the next Chip-8
instruction

0184 E6 TEST_FOR_E
QUALITY:

SEX 6 The VX pointer (R6) will now be used for
register indirect addressing operations

0185 F3 XOR XOR NN with the contents of VX. A number
XOR'd with itself will be zero, so if the result
of this operation is zero then the the
contents of VX is equal to NN

0186 3A 82 BNZ NO_SKIP If VX does not equal NN (indicated by a
non-zero result), then return to the fetch
and decode routine

0188 15 SKIP_INSTR: INC 5 Skip first byte of next instruction

0189 15 INC 5 Skip second byte of next instruction

018A D4 SEP 4 Return to the fetch and decode routine

Compiled by Laurence Scotford 2013! ! ! ! Page 29 of 40! !

Address Code Labels Assembler Comments

018B 45 4XNN: LDA 5 This is the entry point for the 4XNN
instruction group (Skip if VX ≠ NN)
On entry the Chip-8 programme counter
(R5) will be pointing to the second byte of
the instruction, which contains the value NN
to be compared. This is loaded into the
accumulator before the programme counter
is advanced to point to the next Chip-8
instruction

018C E6 TEST_FOR_I
NEQUALITY:

SEX 6 The VX pointer (R6) will now be used for
register indirect addressing operations

018D F3 XOR XOR NN with the contents of VX. A number
XOR'd with itself will be zero, so if the result
of this operation is not zero then the the
contents of VX is not equal to NN

018E 3A 88 BNZ SKIP_INSTR If VX does not equal NN (indicated by a
non-zero result), then skip the next
instruction

0190 D4 SEP 4 Return to the fetch and decode routine

0191 45 9XY0: LDA 5 This is the entry point for the 9XY0
instruction group (Skip if VX ≠ VY)
The LDA 5 instruction used here simply
moves the programme counter on to the
next instruction, since the value stored in D
is not used. It's not clear why the
programmer chose to use an LDA rather
than an INC instruction here

Compiled by Laurence Scotford 2013! ! ! ! Page 30 of 40! !

Address Code Labels Assembler Comments

0192 07 LDN 7 Get the value in the VY variable into the
accumulator

0193 30 8C BR TEST_FOR_INEQUALITY Branch to the test for inequality. The
operands will be VX (pointed to by R6) and
VY, which is now held in D

0195 45 5XY0: LDA 5 This is the entry point for the 5XY0
instruction group (Skip if VX = VY)
Moves the programme counter on to the
next instruction. See comment for the
instruction at 0x0191

0196 07 LDN 7 Get the value in the VY variable into the
accumulator

0197 30 84 BR TEST_FOR_EQUALITY Branch to the test for inequality. The
operands will be VX (pointed to by R6) and
VY, which is now held in D

0199 E6 EX9E/EXA1: SEX 6 This is the entry point for instruction groups
EX9E (Skip if VX = current key press) and
EXA1 (Skip if VX ≠ current key press)
The VX pointer (R6) will now be used for
register indirect addressing

019A 62 OUT 2 This will take the value in VX and output it
to the keyboard latch. This causes external
flag 3 to be set if that key is currently held
down or reset if not

Compiled by Laurence Scotford 2013! ! ! ! Page 31 of 40! !

Address Code Labels Assembler Comments

019B 26 DEC 6 OUT instructions cause the register
currently selected in X to be automatically
advanced. This instruction resets the VX
pointer to point to the correct variable. This
is a necessary precaution because if the
selected variable is VF, the increment will
cause the VX pointer to be pointing to the
wrong page entirely when the next
instruction is fetched

019C 45 LDA 5 Get the second byte of the Chip-8
instruction and advance the Chip-8
programme counter (R5)

019D A3 PLO 3 The second byte of the instruction is
actually the low-order byte of the address of
the next part of the handler to be run,
depending on whether we are testing for a
key being pressed (0x9E) or not being
pressed (0xA1). This value is loaded into
the interpreter programme counter (R3) so
that execution continues from the correct
point.

019E 36 88 B3 SKIP_INSTR External flag 3 will be set if the key
indicated in VX is pressed, so jump to the
code that skips the next instruction

01A0 D4 SEP 4 Return to the fetch and decode routine

Compiled by Laurence Scotford 2013! ! ! ! Page 32 of 40! !

Address Code Labels Assembler Comments

01A1 3E 88 BN3 SKIP_INSTR External flag 3 will be clear if the key
indicated in VX is not pressed, so jump to
the code that skips the next instruction

01A3 D4 SEP 4 Return to the fetch and decode routine

01A4 F8 F0 BMMM: LDI 0xF0 Start of handler for group BMMM
instructions: branch to address 0x0MMM +
V0
Create the low-order byte of the address of
V0

01A6 A7 PLO 7 Load this into the VY pointer (R7). This is
already loaded with the high-order byte of
the address, so it now points to V0

01A7 E7 SEX 7 Set the VY pointer to be used for register
indirect addressing

01A8 45 LDA 5 Get the low-order byte of the current Chip-8
instruction

01A9 F4 ADD Add the value in V0 to the low-order byte of
the current Chip-8 instruction to form the
low-order byte of the address to be
branched to

01AA A5 PLO 5 Load this into the Chip-8 programme
counter

01AB 86 GLO 6 The VX pointer has the high-order byte of
the address to be branched to

Compiled by Laurence Scotford 2013! ! ! ! Page 33 of 40! !

Address Code Labels Assembler Comments

01AC FA 0F ANI 0x0F We just need to use a mask to set the most
significant digit to 0x0

01AE 3B B2 BNF
STORE_HIGH_ORDER_BYTE

If the ADD instruction at 0x01A9 did not
cause a carry, then we know the addition of
the offset has not crossed a page boundary,
so we can skip the next instruction

01B0 FC 01 ADI 0x01 If a carry was generated, we need to add 1
so the high-order byte of the address points
to the correct page

01B2 B5 STORE_HIGH
_ORDER_BY
TE:

PHI 5 Load the high order byte of the address into
the Chip-8 programme counter

01B3 D4 SEP 4 Return to fetch and decode routine (Next
instruction fetched will be at the address
branched to)

01B4 45 6XNN: LDA 5 Instruction 6XNN -> Store NN in VX
Get the value in the second byte of the
instruction into the accumulator (D) and
then advance the Chip-8 programme
counter to the next instruction

01B5 56 STR 6 Store the value in VX

01B6 D4 SEP 4 Return to fetch and decode routine

Compiled by Laurence Scotford 2013! ! ! ! Page 34 of 40! !

Address Code Labels Assembler Comments

01B7 45 7XNN LDA 5 Instruction 7XNN -> Add NN to VX
Get the value in the second byte of the
instruction into the accumulator (D) and
then advance the Chip-8 programme
counter to the next instruction

01B8 E6 SEX 6 Set the VX pointer to be used for register
indirect addressing instructions

01B9 F4 ADD Add the value in VX to the accumulator (D),
which currently holds the immediate
operand from the second byte of the Chip-8
instruction

01BA 56 STR 6 Store the result back in VX

01BB D4 SEP 4 Return to the fetch and decode routine

01BC 45 8XYN: LDA 5 Instruction 8XYN -> ALU operations on VX
and VY
Get the value in the second byte of the
instruction into the accumulator (D) and
then advance the Chip-8 programme
counter to the next instruction

01BD FA 0F ANI 0x0F Mask the byte to save just the second hex
digit

01BF 3A C4 BNZ DECODE_AL_INSTR If the second digit is not zero, it's an
arithmetic and logic instruction, so branch to
the decode routine for these

Compiled by Laurence Scotford 2013! ! ! ! Page 35 of 40! !

Address Code Labels Assembler Comments

01C1 07 LDN 7 If we fall through to this point, it's an 8XY0
instruction to copy VY into VX
Get the value of VY into the accumulator
(D)

01C2 56 STR 6 Copy this into VX

01C3 D4 SEP 4 Return to fetch and decode routine

01C4 AF DECODE_AL_
INSTR:

PLO F Temporarily save the last digit of the
instruction in RF.0

01C5 22 DEC 2 Decrement the stack pointer, ready for a
push operation

01C6 F8 D3 LDI 0xD3 Load a 0xD3 1802 instruction (SEP 3) into
the accumulator

01C8 73 STXD Push this onto the stack and decrement the
stack pointer

01C9 8F GLO F Restore the last digit of the Chip-8
instruction to the accumulator

01CA F9 F0 ORI 0xF0 OR this with 0xF0 to create a 1802
instruction of the form 0xFN, where N is the
last hex digit of the Chip-8 instruction

01CC 52 STR 2 Push this onto the stack.

01CD E6 SEX 6 Set the VX pointer to be used for register
indirect addressing memory instructions

01CE 07 LDN 7 Load the value in VY into the accumulator

Compiled by Laurence Scotford 2013! ! ! ! Page 36 of 40! !

Address Code Labels Assembler Comments

01CF D2 SEP 2 Execute the two instructions at the top of
the stack (the first of these will be the AL
instruction, the second will be a SEP 3
instruction to return control to this routine at
the instruction following this one

01D0 56 STR 6 Save the result of the operation in VX

01D1 F8 FF LDI 0xFF 0xFF is the low-order byte of the address of
Chip-8 variable VF

01D3 A6 PLO 6 The VX pointer now points to VF

01D4 F8 00 LDI 0x00 Clear the accumulator

01D6 7E SHLC Move the carry flag into the least significant
bit of the accumulator

01D7 56 STR 6 Save this in VF

01D8 D4 SEP 4 Return to the fetch and decode routine

01D9 19 CXNN: INC 9 Instruction CXNN -> set VX to random
number masked by NN
Increment random number seed (R9). This
value is incremented 60 times a second by
the interrupt routine, but this may not have
run since the last random number was
generated, so it is also incremented here

01DA 89 GLO 9 Get the low-order byte of the random
number seed

Compiled by Laurence Scotford 2013! ! ! ! Page 37 of 40! !

Address Code Labels Assembler Comments

01DB AE PLO E Save this in RE.0

01DC 93 GHI 3 Get the high order byte of the interpreter
programme counter (This will be 0x01)

01DD BE PHI E Put this in RE.1. RE now points to a random
byte of interpreter code in page 0x01

01DE 99 GHI 9 Get the high order byte of the random
number seed

01DF EE SEX E Use RE for register indirect addressing

01E0 F4 ADD Add value of random byte from interpreter
code to the current high-order byte of the
random number seed

01E1 56 STR 6 Store this in VX

01E2 76 SHRC Shift the result one bit to the right. This will
effectively divide the full result of the
addition by 2 as it takes into account the
carry bit generated by the addition

01E3 E6 SEX 6 Use VX pointer for register indirect
addressing

01E4 F4 ADD Add current value in VX to shifted value in
accumulator

01E5 B9 PHI 9 Save this as the new high-order byte of the
random number seed

01E6 56 STR 6 Put this value in VX

Compiled by Laurence Scotford 2013! ! ! ! Page 38 of 40! !

Address Code Labels Assembler Comments

01E7 45 LDA 5 Get second byte of Chip-8 instruction and
advance programme counter

01E8 F2 AND Use this to mask the random number in VX

01E9 56 STR 6 Put final value in VX

01EA D4 SEP 4 Return to the fetch and decode routine

01EB 45 AMMM: LDA 5 Instruction AMMM -> Set I to MMM
Get the value in the second byte of the
instruction into the accumulator (D) and
then advance the Chip-8 programme
counter to the next instruction

01EC AA PLO A Set this as the low-order byte of the
address in I (RA)

01ED 86 GLO 6 Get low order byte of VX pointer, as this
retains the second hex digit of the first
instruction byte

01EF FA 0F ANI 0x0F Set the first hex digit to 0x0

01F0 BA PHI A Set this as the high-order byte of the
address in I

01F1 D4 SEP 4 Return to fetch and decode routine

01F2 00 00 00 00 00 00 00 00
00 00

DB 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00

Filler

Compiled by Laurence Scotford 2013! ! ! ! Page 39 of 40! !

Address Code Labels Assembler Comments

01FC 00 E0 DB 0x00, 0xE0 A chip 8 instruction to call the machine code
routine at 00E0. This clears the display.
This is executed at the start of every Chip-8
program.

01FE 00 4B DB 0x00, 0x4B A chip 8 instruction to call the machine code
routine at 004B. This switches on the
display. This is executed at the start of
every Chip-8 program.

Compiled by Laurence Scotford 2013! ! ! ! Page 40 of 40! !

